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Indicator Kriging or Multiple Indicator Kriging received significant attention as a non-linear approach to 
estimate recoverable reserves.  The basic idea is to discretize the range of variability and directly predict 
the conditional distribution at unsampled locations.  These point-scale distributions are sometimes 
corrected to account for a selective block size, which provides a direct estimate of recoverable reserves.  A 
related idea is sequential simulation, which is a well-established paradigm of simulation.  A multivariate 
distribution is sampled via sampling a succession of conditional distributions.  Sequential Indicator 
Simulation (SIS) was proposed in the 1980s as a flexible simulation approach to categorical and 
continuous variables.  The conditional distributions are built with indicator kriging.  Simulation is done at 
a point scale: no volume variance change is applied. 

There are significant problems with SIS.  The direct estimation of cumulative probability values does not 
necessarily lead to licit estimates – there are order relation deviations.  These accumulate over grid nodes 
in SIS and lead to problems.  The distributions must be extrapolated into grade ranges higher than the 
highest threshold, which introduces problems.  There is no resolution within the different grade ranges, 
which leads to unwarranted noise.  There is no correlation between different grade ranges, which also 
leads to unwarranted noise.  The additional noise leads to SMU-scale block values that are smoother than 
they should be.  The combination of these problems create a significant challenge in the use of SIS for 
recoverable reserves. 

Introduction 

The estimation of recoverable reserves is one of the most important problems faced by mining 
geostatisticians during the evaluation of a project.  Consider a selective mining unit (SMU) size different 
based on the deposit type, mining equipment and data available at the time of mining for ore/waste 
discrimination.  Recoverable reserves are the tonnage of ore (and waste) and the grade of the ore that will 
be mined at the SMU scale at some point in the future with more information than presently available.  We 
would also like to predict the uncertainty in the recovered tonnage and grade. 

Several techniques have been proposed to evaluate recoverable reserves.  A common two-step procedure is 
to (1) build a block model by an estimation technique like kriging, and (2) apply a cutoff grade to the 
estimates to assess the number of ore blocks and their grade.  This estimation-based approach is 
problematic with widely spaced exploration drillholes because of the smoothing effect of kriging.  
Sometimes, the search of kriging is limited so that the histogram of estimates is not overly smoothed.  This 
leads to a global estimate that is more reasonable, but poorer local estimates. 

Simulation may be performed with multivariate Gaussian techniques.  The normal score or Gaussian 
transform of the variable is assumed to be multivariate Gaussian distributed in space.  There are many 
techniques to sample this multivariate distribution.  The point-scale simulated realizations can be scaled 
(averaged-up) to the SMU scale and recoverable reserves calculated.  The realizations are useful to assess 
uncertainty.  There are cases, however, where the multigaussian model is deemed inappropriate and 
alternative techniques are considered. 

Indicator based estimation and simulation have been proposed as an alternative to traditional kriging and 
Gaussian simulation, respectively. Indicator kriging is used to build local conditional distributions at every 
location without a prior assumption about their shapes (Goovaerts, 1994).  A change of support model can 
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be applied and recoverable reserves inferred. Sequential indicator simulation (SIS) applied to continuous 
variables, such as metal grades, is aimed at generating realizations that reproduce the global grade 
distribution (histogram) and the spatial continuity at different cut-offs, locally conditioned by the sample 
data.  This procedure has advantages over Gaussian simulation since it permits the straightforward 
integration of secondary soft data and provides increased flexibility to account for different patterns of 
spatial continuity at different cut-offs (Deutsch and Journel, 1998), whereas parametric methods impose a 
particular spatial continuity for different thresholds given the spatial law. 

These advantages have contributed to the popularity of indicator based techniques.  In addition to the 
estimation of recoverable reserves, these techniques can be used for evaluating the probability of exceeding 
a particular threshold over the deposit. Indicator simulation has been deemed suitable for modeling deposits 
where grades at different classes have different spatial behaviour, such as a high spatial connectivity of 
high grades, and where mixed populations are present in conditions that do not allow a clear separation of 
these populations into different domains.  

Although the indicator approach appears to have many advantages, there are several practical and 
theoretical difficulties associated to the indicator variograms modelling and the construction of the local 
distribution by indicator kriging, exist (Chilès and Delfiner, 1999; Christakos, 2000; Emery and Ortiz, 
2004).  In the context of the estimation of recoverable reserves the most relevant challenges of indicator 
simulation are: (1) uncontrolled transitions between classes, and (2) randomness within classes. 

In this paper, we review the application of indicator simulation for continuous variables and discuss the 
main difficulties in its application.  The next section presents a brief recall of the indicator approach, 
followed by a discussion on some of its issues.  Potential solutions, particularly concerning the reserves 
estimation related difficulties, are proposed and their limitations discussed.  The paper concludes with a 
discussion on the use of sequential indicator simulation for grade modeling. 

Review of Sequential Indicator Simulation 

The aim of indicator kriging is to estimate the conditional distribution at an unsampled location u from the 
available n samples in the neighbourhood. Then, by knowing the conditional distribution, estimates, 
confidence intervals and simulated values at point and block support can be generated.  

Simulation of a continuous variable by the sequential indicator method is performed by drawing a value 
from a ccdf and using it as a conditioning value for subsequently simulated nodes, as is done in the 
Gaussian framework. 

Indicator geostatistics for continuous variables requires a simple coding of the grades Z(u) in a set of 0’s 
and 1’s depending if a particular cutoff kz  is exceeded or not (Journel 1983, Deustch and Journel 1998) : 
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The coding is performed for a set of thresholds , 1,...,kz k K=  in order to discretize the conditional 
distributions. The same coding can be applied to take into account soft data, where the value is unknown 
for some ranges. 

The direct experimental variogram of each indicator coded variable can then be calculated by the method of 
moments for a given sample separation h and considering N(h) pairs of data approximately separated by 
such distance: 
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If the stationarity hypothesis is assumed, the expected value of the indicator transform is equivalent to the 
global cumulative distribution function (cdf) of the variable Z(u), regardless the location u (Goovaerts, 
1994): 
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Using simple kriging and provided the models of the indicator direct variograms or covariances are known, 
this global cdf can be conditioned by the n surrounding data values at any location u and for several cut-
offs, thus the conditional cumulative distribution becomes (ccdf): 
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The simple indicator kriging (SIK) system of equations, for each cutoff Kkzk ,...,1, = , is expressed as: 
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The resultant SIK weights );( kzαuβλ  are then used to estimate the conditional local probabilities as 
(Deutsch and Journel, 1998): 
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Inference of these indicators at different cut-offs yields the discretized conditional distribution shown in 
Figure 1. Since the full distribution is needed for simulation, interpolation of the ccdf between thresholds 
and extrapolation below the lowest and above the highest threshold are needed.  

 

 
Figure 1: Discretized conditional cumulative distribution function at a given location u. The estimated 
indicator value for a cutoff zk represents the estimated cumulative probability at that cutoff. 

 

With the full ccdf, it is easy to calculate an estimate, infer a confidence interval and simulate a grade value. 
In the case of sequential indicator simulation, the procedure consists in visiting all uninformed nodes 
randomly within a grid and, at every location, inferring the distribution conditional to the available sample 
data and the previously simulated grid nodes. From this distribution a simulated value is drawn by Monte-
Carlo simulation and its value is used to condition all subsequently simulated nodes. Multiple realizations 
can be obtained by changing the random order in which the nodes are visited and the drawing from each 
conditional distribution. 

The conventional application of indicator simulation does not consider accounting for the correlation that 
exists between thresholds, generating realizations without the continuity that must exist between high and 
low valued zones. Furthermore, within a particular class, the drawing of the simulated value is done 
randomly, adding artificial noise to the final result. 
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Challenges of Sequential Indicator Simulation for Ore Reserve Estimation 

Most textbooks and several papers discuss some of the problems that sequential indicator simulation has. A 
brief description of these problems and the correspondent proposed solutions is presented next 

• The estimated indicators may not be consistent in that the estimated cumulative probability values 
may be less than zero, above one or decrease.  These order relation deviations are explained by 
the independent estimation of each indicator and the unconstrained optimization in the kriging of 
each indicator.  The problem of order relations deviations can be corrected by simple methods 
(Deustch and Journel, 1998).  

• The resulting simulated models are highly sensitive to the extrapolation of the higher tail.  
Biased results are easily obtained and there is a risk of transferring this bias when a change of 
support is performed (Emery and Ortiz, 2004).  Good practice is to check and validate the 
resulting numerical models to ensure they properly reproduce the sample data, global histogram 
and indicator variograms.  The definition of the extrapolation of the higher tail can be addressed 
by using some parametric shape of the tail up to a reasonable maximum (e.g. hyperbolic or power 
model) and finding by trial and error the value that better reproduces the global distribution and 
the relevant statistics of the population (declustered mean and variance). 

• The indicator coding carries a loss of information since, rather than knowing the exact value of a 
sample, after the coding, only the class at which it belongs is known.  This loss is not high if the 
variable is Gaussian, and it is compensated by the superior resistance of this approach to outliers 
(Solow 1993).  However it can be demonstrated that this loss of information can be considerably 
high if samples with values close to a cut-off are very close to the estimated location.  Moreover, 
the local ccdf can change if a new sample location is added even when its value is not known 
(Emery and Ortiz, 2004).  

In addition to these problems, an important weakness is that models often do not look geologically realistic.  
This can be explained because (1) indicator kriging does not take into account the correlations between cut-
offs and (2) within classes the values are independent from each other. 

By not taking into account the correlation between cut-offs and due to the random drawing of the simulated 
values within the corresponding class, sequential indicator simulation realizations show a spatial 
persistence of unstructured short scale intermixing of low and high values. Geologically unrealistic adjacent 
patches of high and low values are characteristic of indicator simulation realizations.  Rather than just being 
a visually and geologically unappealing feature, it leads to a reduced variability when block averages are 
calculated to Selective Mine Units (SMU) support.  This is caused by the homogenization of the intermixed 
low and high values when they are averaged to larger volumes and it can considerably underestimate the 
uncertainty in the recoverable reserves, as it is demonstrated in the next section.  

If simple or ordinary kriging is used to build the ccdf no information regarding the interclass spatial 
correlation is introduced.  Thus from one location to another the ccdf can change abruptly according to the 
proximity of samples or previously simulated values corresponding to different classes.  This results in the 
characteristic uncontrolled adjacent presence of different class values in SIS realizations.  An obvious 
solution is to use an indicator co-kriging to calculate the ccdfs.  However, deriving the full matrix of 
indicator direct and cross variograms required for indicator co-kriging leads to other difficulties related to 
the validity of the coregionalization model needed; this problem is presented and discussed below. 

The second unwarranted issue, the randomness within classes, is produced by the independent drawing of 
simulated values on the indicator kriging ccdf.  

Case study: the effect of abrupt transitions and randomness within classes in uncertainty assessment 
of SMU grades 
As explained above, the excess variability in SIS realizations yields to an underestimation of the 
uncertainty in the recoverable reserves when the simulated nodes are upscaled to the SMU support. A real 
data example is presented in order to illustrate this.  
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The data subset was taken from a diamond drilling exploration campaign of a Chilean copper deposit; it is 
comprised of 180 samples corresponding to a single bench and within a single lithotype domain 
(Tourmaline Breccias).  Figure 2 presents the sample location and histogram. 

 

 
Figure 2: data locations and distribution used for illustrate the challenges of SIS 

 

Nine thresholds were defined coinciding with the deciles of the distribution. The experimental indicator 
variograms for all these cut-offs were generated and, in order to account for variogram uncertainty, each 
one was fitted with three different variogram models: a low continuity model, a high continuity model and 
a best fit model with mid continuity. These correspond, respectively, to the highest nugget effect with the 
shorter range model the lowest nugget effect with the longest range model and the average model that can 
be reasonably fitted to the experimental indicator variograms generated. Additionally three variograms 
models are fitted to the continuous variable under these same criteria.  

Three sets of 100 Sequential Gaussian Simulation (SGS) realizations and three sets of 100 SIS realizations 
are generated using the corresponding minimum, middle and maximum continuity variogram models in a 
2m x 2m x 2m grid. These point support realizations are averaged to a SMU size of 12m x 12m x 12m. 
Figure 3 presents point support sample realizations maps and histograms for both SGS and SIS and Figure 
4 presents the same graphs for sample SMU scale average realizations. Only the realizations using the mid 
continuity model are shown. 

Both SIS and SGS reproduce the input histogram very well at the point support scale, and honour the low 
and high grade zones, however the SIS realizations present the characteristic patches of different class 
values mentioned above. 

When averaged to a larger SMU size, SGS realizations clearly preserve the distribution and structure of 
high and low grade areas in concordance with the original sample values, but this differentiation is much 
less clear in the SIS realizations, which show an increased smoothing of values. 
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Figure 3: SGS (on top) and SIS (on bottom) realizations maps and histograms at a 2m x 2m x 2m grid size. 
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Figure 4: Upscaled SGS (on top) and SIS (on bottom) realizations maps and histograms to a 12m x 12m x1 
2m SMU size. 
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Figure 5: Comparative uncertainty in the total metal content for SGS and SIS realizations. 
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Overall uncertainty can be quantified by the standard deviation of the average grade above cut-off, for the 
proportion of recoverable tonnage or the recoverable metal content obtained from the multiple realizations. 
Here only the standard deviation of the recoverable metal content is analysed.  Figure 5 presents the 
standard deviation of the recoverable metal content for the SMU scale SGS and SIS realization at different 
levels of spatial continuity in the variogram model.  The uncertainty in the recoverable metal content is 
lower for the SIS realizations; it can be as much as 30% lower for this particular case and slightly increases 
as the variogram continuity increases due to a gain in the structure and continuity of SIS realizations as the 
nugget effect diminishes and the variogram range becomes larger.  

Thus this lower uncertainty in the SIS at the SMU scale does not correspond to a better representation of 
the grades distribution, but to the loss of spatial structure in the short scale, which translates in the increased 
smoothness at the SMU scale, lowering the uncertainty on the recoverable metal for SIS results. Intuitively, 
one would expect the opposite: The higher the spatial continuity, the lower the uncertainty in the transfer 
function. SGS results suit better this expected behaviour: uncertainty in the recoverable metal content 
decreases slightly as variogram continuity increases.  

The full indicator Co-kriging approach 

In order to mediate the uncontrolled interclass transitions and its effects, the most direct procedure would 
be to include the interclass correlation information via indicator cross-variograms and implementing the 
indicator co-kriging for building the ccdfs required by SIS. However this approach leads to serious 
difficulties related to the validity of the coregionalization model required as shown next.  

Gaussian based methods, as sequential gaussian simulation, require the assumption of multigaussianity, that 
is, not only the univariate (one-point) distribution must be Gaussian, but also the bivariate (two-point) 
distribution and all higher order distributions must be muli-Gaussian. A common check for the assumption 
of bigaussianity is to compare the experimental indicator variograms of the original or, equivalently, 
Gaussian transformed grades, to the theoretical indicator variogram derived from a perfectly multigaussian 
distribution that corresponds to the variogram of the Gaussian transformed grades. This check is usually 
performed only on the direct indicator variograms, however it is worthwhile to assess if the full co-kriging 
approach is applicable to a perfectly bigaussian variable. 

Given two different Gaussian transformed cut-offs, ky  and ky ′  the experimental indicator cross variogram 
can be calculated as: 
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The theoretical Gaussian indicator cross variogram can expressed analytically as: 
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Where p and p’ are the quantiles corresponding to the ky  and ky ′  cut-offs, respectively, and )(hYC  is the 
covariance of the Gaussian variable for the vector h. The analytical solution of this equation is quite 
complicated, therefore a FORTRAN program  based in a Monte Carlo simulation of the bigaussian 
distribution was developed to derive the theoretical indicator cross variograms.  

If K cut-offs are considered, the K² experimental indicator direct and cross variograms must be 
simultaneously fitted in order to construct the K K× variogram matrix: 
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This matrix must be positive semi-definite to ensure that the variance of any linear combination of the 
transform );( kyI u  is non negative (Journel and Huijbregts, 1978). The Linear Model of 
Coregionalization (LMC) is the only model available that fulfills this condition by modelling all the direct 
and cross variograms as a linear combination of a limited number of variogram functions (Goovaerts; 1994, 
1998): 
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Where )(hlg  is a permissible variogram model with standardized sill, and lB is a  K K× matrix 

containing the sill contributions, l
ppb ′ , of the model )(hlg  for each indicator direct and cross variogram. 

In order to assure the positive definiteness of the LMC, the matrix lB  must be positive semi definite and 
the same permissible variogram models, )(hlg , must be fitted to direct and cross variograms. 

 

 
Figure 6: Theoretical bigaussian derived indicator direct and cross variograms (dots) and an attempt to fit 
them with a LMC (continuous lines) 

 

Figure 6 presents the upper side of  theoretical indicator direct and cross variograms symmetrical matrix 
derived for three cut-offs corresponding to the deciles p10, p50 and p90 of a variable with multigaussian 
distribution and a spherical variogram of range 1 without nugget effect, in the same graph the attempt to fit 
a permissible LMC is also presented. 

The most important feature in this matrix is the extreme continuity at short scale that  indicator cross-
variograms of the most divergent cut-offs present. This extreme continuity cannot be modeled by any 
permissible variogram model, and can be explained by the fact that the indicator cross variogram increases 
only if a simultaneous class transition from the tail to the head of the separation vector h is registered for 
both cut-offs. This event becomes rarer as cut-offs diverge, and at short distances. 
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The lack of a valid variogram model to fit the extreme thresholds indicator cross-variograms is the major 
hindrance to the adequacy of the LMC to fit the complete variogram matrix. The second difficulty is to 
apply the same set of variogram models to the changing shapes of the indicator direct and cross variograms 
as the cut-offs diverge. 

It could be argued that this extreme continuity for divergent cut-offs is characteristic only for a 
multigaussian variable, where extremely large and small values are spatially uncorrelated (Goovaerts, 
1997), but, as it is shown in figure 7, it also can appear in the indicator cross variograms of real cases non-
Gaussian variables such as the copper grades of the referred Chilean deposit. Therefore, in many cases, the 
LMC is not suitable to fit the complete matrix of non-gaussian real data indicator direct and cross-
variograms.  

Adjacent cutoff indicator kriging 

As the LMC is inadequate for fitting the full indicator variogram matrix, a practical, but partial, alternative 
is to use the adjacent Cut-offs Indicator Cokriging (acoIK) for introducing the interclass correlation 
information in the SIS algorithm. 

For each one of the K cut-offs, the correspondent ccdf value estimation by acoIK requires only the LMC of 
the indicator direct and cross variograms corresponding to the adjacent thresholds 11 000

 and , +− kkk yyy , 
that is, two 2 x 2 variogram matrices for the first and last cut-offs, and p-2 3 x 3 matrices for the 
intermediate cut-offs. The modeling of each one of these matrices is performed independently, although 
some consistency between the resultant K LMC should be kept. A satisfactory fitting of the LMCs can be 
obtained, without the hindrances of fitting a single full variogram matrix. 

 

 
Figure 7: Experimental indicator direct and cross variograms (dashed lines) and the bigaussian derived 
variograms (continuous lines) 
 
The acoIK system is similar to the full coIK (Goovaerts, 1994): 
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And the estimate is calculated by: 
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Order relation issues are expected after the ccdf estimation for all cut-offs, but they can be corrected in a 
similar way as with indicator Kriging. Once a valid ccdf is built, it can be used to draw a random number, 
which should carry the information of the inter-class correlation if the acoIK is implemented in the 
indicator simulation algorithm. 

Although the restricted adjacent cut-offs matrix of indicator direct and cross variograms can be fitted 
satisfactorily with a LMC, the adjacent cut-offs kriging do not improve considerably the disordered 
interclass transitions observed in SIS. 

Discussion 

The indicator approach can be a useful alternative when dealing with variables that do not fulfill the 
multigaussian assumption, for variables that exhibit different patterns of spatial correlation at different cut-
offs, and for incorporating secondary information. However, indicator simulation suffer not only of the 
hindrances related to non parametric ccdf built by indicator Kriging, but the use of Monte Carlo simulation 
on this ccdf, brings also other difficulties that yield to a considerable underestimation of the uncertainty in 
SIS realizations. 

Issues like order relation deviations and the extrapolation of the ccdf lower and upper tails can be solved 
reasonably. The loss of information related to the indicator coding can be palliated using a large number of 
thresholds; however this requires an increased effort in generating and modeling the indicator variograms 
for each of these cut-offs.  

Using a full indicator cokriging approach could introduce some structure to the interclass transitions by 
informing about the correlation between all cut-offs, but this solution faces the inadequacy of the LMC, the 
only model of coregionalization available, for fitting the full matrix of indicator direct and cross 
variograms, which shows an unusual high continuity for indicator cross variograms of extreme cut-offs. 
The adjacent cut-offs approach provides a partial solution, since close cut-offs yield to indicator direct and 
cross variograms that can be satisfactorily fitted by the LMC . 

The randomness within classes remains unaddressed, the introduction of the distance to the class boundary 
for each simulated node has been proposed to solve this problem, but its practical implementation is still 
pending. 

In view of these challenges, the application of the SIS algorithm, despite its advantages over parametric 
methods, remains very limited in Recoverable Reserves evaluation, being the mayor issue the excess 
variability present in SIS realizations, this leads to an increased smoothness when the point support 
simulations are upscaled to the SMU size causing a misleading underestimation of the uncertainty in the 
reserves. 

However, adjacent cut-offs indicator simulation still has a place in mineral reserves evaluation, it can be 
used for discriminating between different populations with a locally complex spatial distribution, 
previously to their separate simulation with a Gaussian based algorithm (Journel and Kyriakidis, 2004) 

Finally the indicator approach is still useful for categorical variables mapping, as it can introduce different 
continuity patterns for different lytotipes, and no upscaling is needed. The irregularities the high short scale 
variability in categorical variables realizations can be easily eliminated using image cleaning methods. 

Conclusions 

Sequential indicator simulation is affected by the difficulties carried by the Indicator Kriging built ccdf.  
Although most of these drawbacks can be reasonably solved or minimized for the Kriging framework, 
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when translated into the simulation framework two main challenges arise: the uncontrolled interclass 
transitions and the randomness within classes. 

These challenges cause the geologically unappealing “patchiness” present in the SIS realizations at point 
support, an increased smoothness at SMU size and the misleading low uncertainty in the reserves. 

The attempt to solve the first of these challenges using a full indicator co-kriging approach are restricted by 
the inadequacy of the lineal model of correlation to fit the complete matrix of indicator direct and cross 
variograms. 

The adjacent cut-off’s alternative provides only a partial solution. And the randomness within classes still 
unaddressed. 

Thus, the application of indicator simulation is limited for recoverable reserves evaluation, despite its 
several advantages over parametric methods. 
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